Studi Prediksi Analitik Posisi Bantalan (Journal Bearing) Pada Turbin Gas

Rizky Arman, Yovial Mahyoedin

Abstract


Abstrak

Bantalan menyediakan antarmuka utama antara bagian-bagian mesin yang bergerak dan tidak bergerak. Bantalan memberikan sebagian besar kekakuan dan redaman untuk struktur yang bergerak. Dapat dimengerti bahwa gaya dinamis yang dikembangkan pada bagian yang bergerak ditransmisikan ke bagian stasioner melalui bantalan penyangga utama ini. Gaya tersebut dapat berupa beban radial statis karena berat rotor, atau mungkin gaya dinamis karena mekanisme seperti ketidakseimbangan massa. Dalam kedua kasus tersebut, bantalan radial harus membawa beban yang diterapkan, atau mesin akan mengalami kegagalan. Dalam kebanyakan kasus, secara teknis sulit (jika bukan tidak mungkin) untuk secara langsung memeriksa validitas atau akurasi dari koefisien bantalan yang dihitung. Namun, setiap perhitungan harus diakhiri dengan keseimbangan gaya, ditambah keseimbangan posisi jurnal dalam jarak bebas bantalan. Karena jurnal dalam bantalan film-oli dapat diukur secara langsung dengan proximity probes, logis untuk melakukan pemeriksaan prediksi analitik versus data mesin yang sebenarnya. Proximity probe sensorik dipasang pada ± 450 dari garis tengah vertikal sebenarnya. Pada bantalan ujung saluran masuk turbin # 1, probe dipasang di atas poros. Sebaliknya, di exhaust # 2 bantalan, probe terletak di bawah poros. Untuk penelitian pada kasus ini dilakukan pada empat turbin gas poros tunggal yang beroperasi antara 5.000 dan 5.350 RPM. Unit ini memiliki daya 40.000 HP, dan digunakan untuk menggerakkan kompresor sentrifugal bertekanan tinggi melalui satu kotak roda gigi heliks. Dapat dimengerti bahwa jika posisi eksentrisitas yang dihitung benar, maka parameter yang dihitung lainnya juga mewakili karakteristik bantalan.

 

Kata kunci: journal bearing, turbin gas, proximity probe, posisi eksentrisitas.

 

Abstract

Bearings provide the primary interface between the moving and the stationary parts of a machine. Although the seal and the process fluids (or magnetic fields) coexist, the bearings provide the majority of the stiffness and damping for the moving assembly. It is understandable that dynamic forces developed on the moving part are transmitted to the stationary part across these main support bearings. The forces may be the static radial loads due to the rotor weight, or they may be dynamic forces due to mechanisms such as mass unbalance. In either case, the radial bearings must carry the applied loads, or the machine will fail. In most cases, it is technically difficult (if not impossible) to directly check the validity or accuracy of the computed bearing coefficients. However, each calculation must conclude with a force balance, plus a position balance of the journal within the bearing clearance. For this case history, consider a group of four single shaft gas turbines that operate between 5,000 and 5,350 RPM. These units are rated at 40,000 HP, and they are used to drive high pressure centrifugal compressors through a single helical gear box. The shaft sensing proximity probes are mounted at ±450 from the true vertical centerline. At turbine inlet end#1 bearing, the probes are mounted above the shaft. Conversely, at the exhaust end #2 bearing, the probes are located below the shaft. Since journal within an oil film bearing can be measured directly with proximity probes, it is logical perform a check of the analytical prediction versus actual machine data. It is reasonable to believe that if the calculated eccentricity position is correct, than the other computed parameters are also representative of the bearing characteristics.

 

Keywords: journal bearing, gas turbine, proximity probes, eccentricity position.

Full Text:

PDF

References


P. Pennacchi and A. Vania, “Analysis of the instability phenomena caused by steam in high-pressure turbines,” vol. 18, pp. 593–612, 2011.

M. E. Leader, “Understanding Journal Bearings.”

D. J. Salamone, “JOURNAL BEARING DESIGN TYPES AND THEIR APPLICATIONS TO TURBOMACHINERY by,” pp. 179–190, 1984.

“Bearing Supports from Automotion Components.”

M. He, C. H. Cloud, and J. M. Byrne, “FUNDAMENTALS OF FLUID FILM JOURNAL BEARING OPERATION AND MODELING,” 2005.

W. B. Rowe, K. Cheng, and D. Ives, “A knowledge-based system for the selection of fluid film journal bearings,” Tribol. Int., vol. 24, no. 5, pp. 291–297, 1991.

J. D. Irwin, Mechanical Engineer ’ s Handbook Academic Press Series in Engineering Series Editor. 2001.

J. D. Irwin, Mechanical Engineer ’ s Handbook. 2001.

C. Jackson, “by,” pp. 73–86, 1960.

G. F. Simmons, Journal Bearing Design , Lubrication and. 2013.

K. R. Guy and D. A. Services, “11 Problems – 11 Solutions,” no. March, pp. 16–22, 2007.

J.D. McHugh, “principles of turbomachinery bearings.pdf.” .




DOI: https://doi.org/10.52447/jktm.v6i1.4516

Refbacks

  • There are currently no refbacks.