OPTIMIZATION OF ROOFTOP SOLAR POWER PLANT DESIGN AT THE BAPENDA BILDING, WEST JAVA

Denaro Alfiandito, Linda Faridah, Ifkar Usrah

Abstract


Dependence on fossil fuels as the primary source of electricity has led to various environmental emissions and long-term energy security concerns, especially as electricity demand continues to rise. Transitioning to renewable energy sources is a crucial step in addressing these issues. One strategic solution is the implementation of rooftop Solar Power Plants (PLTS), in line with the Indonesian government's target to increase the share of renewable energy to at least 23% by 2025 and 31% by 2050. The solar irradiation potential in the Buahbatu area of Bandung City reaches 5.19 kWh/m²/day, offering significant potential for solar energy utilization. This study focuses on the design of a rooftop PLTS for the BAPENDA building in West Java using PVsyst software to determine the system configuration, component selection, and energy production simulation. The available rooftop area of 228 m² is utilized for the installation of the PLTS. Simulation results indicate that the system can accommodate 110 photovoltaic (PV) modules with a capacity of 380 Wp, covering an area of 218 m². The system is supported by 10 inverters, each with a capacity of 4 kW. The total annual energy production from the PLTS reaches 67,198 kWh, compared to the building’s annual energy consumption of 353,011 kWh. Additionally, approximately 23 kWh of surplus energy is exported back to the PLN grid. The findings demonstrate that the implementation of a rooftop PLTS can significantly reduce dependence on conventional energy sources, contribute to carbon emission reductions, and support national renewable energy targets


Full Text:

PDF

References


S. M. Metev and V. P. Veiko, Laser Assisted Microtechnology, 2nd ed., R. M. Osgood, Jr., Ed. Berlin, Germany: Springer-Verlag, 1998.

J. Breckling, Ed., The Analysis of Directional Time Series: Applications to Wind Speed and Direction, ser. Lecture Notes in Statistics. Berlin, Germany: Springer, 1989, vol. 61.

S. Zhang, C. Zhu, J. K. O. Sin, and P. K. T. Mok, “A novel ultrathin elevated channel low-temperature poly-Si TFT,” IEEE Electron Device Lett., vol. 20, no. 11, pp. 569–571, Nov. 1999.

M. Wegmuller, J. P. von der Weid, P. Oberson, and N. Gisin, “High resolution fiber distributed measurements with coherent OFDR,” in Proc. ECOC’00, 2000, paper 11.3.4, p. 109.

R. E. Sorace, V. S. Reinhardt, and S. A. Vaughn, “High-speed digital-to-RF converter,” U.S. Patent 5 668 842, Sept. 16, 1997.

(2002) The IEEE website. [Online]. Available: http://www.ieee.org/

M. Shell. (2002) IEEEtran homepage on CTAN. [Online]. Available: http://www.ctan.org/tex-archive/macros/latex/contrib/supported/IEEEtran/

FLEXChip Signal Processor (MC68175/D), Motorola, 1996.

“PDCA12-70 data sheet,” Opto Speed SA, Mezzovico, Switzerland.

A. Karnik, “Performance of TCP congestion control with rate feedback: TCP/ABR and rate adaptive TCP/IP,” M. Eng. thesis, Indian Institute of Science, Bangalore, India, Jan. 1999.

J. Padhye, V. Firoiu, and D. Towsley, “A stochastic model of TCP Reno congestion avoidance and control,” Univ. of Massachusetts, Amherst, MA, CMPSCI Tech. Rep. 99-02, 1999.

Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification, IEEE Std. 802.11, 1997.

A. Lubis, “Energi Terbarukan Dalam Pembangunan Berkelanjutan,” J. Teknol. Lingkung. BPPT, vol. 8, no. 2, 2007, doi: 10.29122/jtl.v8i2.420.

R. Purnama, “Energy Economic Development: Electricity Subsidies in Indonesia,” ANP J. Soc. Sci. Humanit., vol. 1, pp. 1–7, 2024, [Online]. Available: https://journalarsvot.com/index.php/anp-jssh/article/view/516%0Ahttps://journalarsvot.com/index.php/anp-jssh/article/download/516/374.

R. P. S. Hutauruk, “Pengaruh Infrastruktur Terhadap Pertumbuhan Ekonomi Di Kota Pematangsiantar,” J. Ekuilnomi, vol. 3, no. 1, pp. 24–37, 2021, doi: 10.36985/w8we1x56.

L. Faridah, “Planning of Solar Generation for Renewable Energy Development in the Evironment of Univeritas Siliwangi , Campus II Mugasari,” vol. 06, no. 2, pp. 59–63, 2024.

L. Faridah, M. Hadi Ibrahim, A. Purwadi, and A. Rizqiawan, “Study and Design of Hybrid Off-Grid Power System for Communal and Administrative Load at 3 Regions in Maluku, Indonesia System for Communal and Administrative Load at 3 Regions in Maluku, Indonesia,” 2018.

L. Faridah et al., “DESIGN OF A HYBRID POWER GENERATION SYSTEM USING SOLAR AND WIND ENERGY IN CIPATUJAH,” vol. 2, no. 25, pp. 107–114, 2024.

M. Trianah, D. W. Saputra, and S. Irnaninsih, “Pengaruh Sejarah Perkembangan Alat Transportasi Darat, Laut, dan Udara di Indonesia serta Dampaknya terhadap Masyarakat,” Semin. Nas. dan Publ. Ilm., pp. 2584–2592, 2024.

R. C. K. Pangestu and A. A. K. Ayuningsasi, “Pengaruh Konsumsi Energi Sektor Industri, Rumah Tangga, dan Transportasi terhadap Emisi Karbon di Indonesia,” Inisiat. J. Ekon. Akunt. dan Manaj., vol. 3, no. 4, pp. 297–311, 2024.

G. Lahope, K. Kunci, E. B. Terbarukan, K. Energi, and T. Energi, “Implementasi Kebijakan Energi Nasional (Ken) Indonesia Menuju 23% Target Bauran Energi Baru Terbarukan (Ebt) 2025,” J. Darma Agung, no. 2024, pp. 124–135, 2024, [Online]. Available: https://dx.doi.org.10.46930/ojsuda.v32i1.3945.

Y. Yudiartono, W. Jaka, and A. Adiarso, “Dekarbonisasi Sektor Ketenagalistrikan Sampai 2050 Dalam Kerangka Kebijakan Energi Nasional,” J. Energi Baru dan Terbarukan, vol. 4, no. 2, pp. 66–82, 2023, doi: 10.14710/jebt.2023.16966.

D. Toba, M. Destinasi, P. Berbasis, and E. Hijau, “PERENCANAAN PEMBANGKIT LISTRIK TENAGA SURYA DIKAWASAN DANAU TOBA MENUJU DESTINASI PARAWISATA BERBASIS ENERGI HIJAU.”

D. F. Silalahi, A. Blakers, M. Stocks, B. Lu, C. Cheng, and L. Hayes, “Indonesia’s Vast Solar Energy Potential,” Energies, vol. 14, no. 17. 2021, doi: 10.3390/en14175424.

A. Kharisma, S. Pinandita, and A. E. Jayanti, “Literature Review: Kajian Potensi Energi Surya Alternatif Energi Listrik,” J. Energi Baru dan Terbarukan, vol. 5, no. 2, pp. 145–154, 2024, doi: 10.14710/jebt.2024.23956.

E. N. Kurniasari, G. Rusmayadi, T. Wianto, and I. Mahyudin, “Perubahan iklim dan potensi energi surya di wilayah monsum (climate change and solar energy potential in monsoon regions),” J. EnviroScienteae, vol. 19, no. 1, pp. 89–98, 2023.

H. S. Fathoni, R. Boer, and Sulistiyanti, “Battle over the sun: Resistance, tension, and divergence in enabling rooftop solar adoption in Indonesia,” Glob. Environ. Chang., vol. 71, p. 102371, 2021, doi: https://doi.org/10.1016/j.gloenvcha.2021.102371.

D. Setyawati, “Analysis of perceptions towards the rooftop photovoltaic solar system policy in Indonesia,” Energy Policy, vol. 144, p. 111569, 2020, doi: https://doi.org/10.1016/j.enpol.2020.111569.

A. Hidayatno, A. D. Setiawan, I. M. Wikananda Supartha, A. O. Moeis, I. Rahman, and E. Widiono, “Investigating policies on improving household rooftop photovoltaics adoption in Indonesia,” Renew. Energy, vol. 156, pp. 731–742, 2020, doi: https://doi.org/10.1016/j.renene.2020.04.106.

N. Byrne, S. Pierce, L. De Donatis, R. Kerrigan, and N. Buckley, “Validating decarbonisation strategies of climate action plans via digital twins: a Limerick case study,” Front. Sustain. Cities, vol. 6, no. July, 2024, doi: 10.3389/frsc.2024.1393798.

V. Vasseur, J. Backhaus, S. Fehres, and F. Goldschmeding, “Capabilities and social practices: A combined conceptual framework for domestic energy use,” J. Clean. Prod., vol. 455, p. 142268, 2024, doi: https://doi.org/10.1016/j.jclepro.2024.142268.

R. Dzulkifli et al., “OPTIMALISASI REGULASI PLTS ATAP DI INDONESIA : STUDI,” vol. 06, no. 3, pp. 1–16, 2025.




DOI: https://doi.org/10.52447/jkte.v10i1.8085

Refbacks

  • There are currently no refbacks.