POTENSI ANTIKANKER NANOPARTIKEL EKSTRAK KURKUMINOID TEMULAWAK TERHADAP SEL LINE KANKER SERVIKS

Riki Riki

Abstract


ABSTRAK

Kanker serviks merupakan salah satu ancaman paling serius bagi kehidupan perempuan. Penggunaan kurkuminoid temulawak menjadi salah satu alternatif pengobatan kanker serviks karena banyak penelitian menunjukkan bahwa kurkuminoid mampu menghambat pertumbuhan berbagai jenis sel kanker. Kurkuminoid digabungkan ke dalam sistem pembawa obat nanopartikel lemak padat untuk mengatasi bioavailabilitasnya yangrendah. Nanopartikel ekstrak kurkuminoid temulawak tersalut lemak padat telah berhasil dibuat dengan ukuran partikel 648.4 ± 95 nm dan nilai indeks polidispersitas 0.219. Hasil uji Brine Shrimp Lethality Test (BSLT) menunjukkan nanopartikel tersebut bersifat toksik. Penelitian ini bertujuan mengetahui potensi antikanker nanopartikel ekstrak kurkuminoid temulawak terhadap sel line kanker serviks. Efek sitotoksik terhadap sel kanker diuji menggunakan sel HeLa dengan metode MTT. Berdasarkan hasil uji MTT, sediaan nanopartikel ekstrak kurkuminoid memiliki kemampuan penghambatan pertumbuhan sel HeLa yang lebih tinggi dibandingkan dengan ekstrak. Nanopartikel ekstrak kurkuminoid dapat mengambat pertumbuhan sel HeLa sebesar 93.43% pada konsentrasi 2 ppm, sedangkanekstrak kurkuminoid  dapat menghambat pertumbuhan sel HeLa sebesar 93.30% pada konsentrasi 62.5 ppm.Data ini menyarankan bahwa nanopartikel ekstrak kurkuminoid dapat menjadi kandidat potensial obat antikanker serviks.

Kata Kunci: kanker serviks, ekstrak kurkuminoid, nanopartikel, sel HeLa, MTT

ABSTRACT

Cervical cancer is one of the gravest threats to women’s lives. The use of temulawakcurcuminoids to be an alternative treatment of cervical cancer because many studies show that curcuminoids able to inhibit the growth of various types of cancer cells. The curcuminoids are incorporated into a solid lipid nanoparticles drug carrier system to overcomeits low bioavailability. Curcuminoids extractsof temulawakloaded solid lipid nanoparticleshave been successfully developed with particle size 648.4 ± 95 nm and polydispersity index value of 0.219. The results of the Brine Shrimp Lethality Test (BSLT) showed the nanoparticles were toxic. This study aims to determine the anti-cancer potential of temulawak curcuminoids extractsnanoparticles against cervical cancer line cells. The cytotoxic effects on cancer cells were tested using HeLa cells with the MTT method. Based on MTT test results, curcuminoids extractsnanoparticleshave the ability HeLa cells growth inhibition higher than the extracts. About 93.43% HeLa cells were inhibited at a concentration of 2 ppm of the curcuminoids extracts nanoparticles, whereas about 93.30% HeLa cells were inhibited at a concentration of 62.5 ppm of the curcuminoids extracts.  These data suggest that temulawak curcuminoids extractsnanoparticles could be potential candidate cervical cancer therapeutic.

Keywords: cervical cancer, curcuminoids extracts, nanoparticles, HeLa cells, MTT


Full Text:

PDF

References


Anand, P. Kunnumakkara, A.B. Newman, R.A. Aggarwal, B.B. 2007. Bioavailability of curcumin: Problems and promises. Mol Pharm, 4:7–18.

Aravindan, N., Veeraraghavan, J., Madhusoodhanan R, Herman T, Natarajan M. 2011. Curcumin regulates low-linear energy transfer γ-radiationinduced NF-κB-dependent telomerase activity in human neuroblastoma cells. Int J Radiat Oncol Biol Phys, 79(4):1206–1215.

Ari, S.L., Starr, A., Vexler, A., Karaush, V., Loew, V., Greif, J., Fenig, E., Aderka, D., Yosef, B.R. 2006. Inhibition of pancreatic and lung adenocarcinoma cell survival by curcumin is associated with increased apoptosis, down-regulation of cox-2 and EGFR and inhibition of Erk1/2 activity. Anticancer Research,26: 4423-4430.

Azarifar, Z., Mortazavi, M., Farhadian, R., Parvari, S., Roushnadeh, A.M., 2015. Cytotoxicity Effects of Aqueous Extract of Purtulaca oleracea on HeLa Cell Line. Pharmaceutical Sciences, 21:41-45.

Banerjee, M., Tripathi, L.M., Srivastava, V.M., Puri, A., Shukla, R. 2003. Modulation of inflammatory mediators by ibuprofen and curcumin treatment during chronic inflammation in rat. Immunopharm. Immunotox, 25:213–224.

Bhardwaj, V., and Kumar, M.N.V.R. 2006. Nanoparticle technology for drug delivery; Polymeric nanoparticles for oral drug delivery. New York: Taylor and Francis Group. E-book. http://ajprd.com/downloadebooks_pdf/49.pdf.

Cahyono, B., Huda, M.D.K., Limantara, L. 2011. Pengaruh proses pengeringan rimpang temulawak (curcuma xanthorriza roxb) terhadap kandungan dan komposisi ekstrak kurkuminoid. Reaktor,13(3):165-171.

Carroll, R.E. Richard, V., Benya, Turgeon, D.K., Vareed, S., Neuman, M., Rodriguez, L., Kakarala, M., Philip, M., Carpenter., McLaren, C., Frank, L., Meyskens, Jr., Brenner, D.E. 2011. Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia. Cancer Prev Res, 4(3):354–64.

Chiu, T.L.,and Su, C.C. 2009. Curcumin inhibits proliferation and migration by increasing the Bax to Bcl-2 ratio and decreasing NF-κ κBp65 expression in breast cancer MDA-MB-231 cells. International Journal of Molecular Medicine, 23:469-475.

Davis, J.M., Navolonic, P.M., Weinstein, C.R., Steelman, L.S., Hu, Konovlepa, M., Blagosklonny, M.V., and McCubrey, J.A. 2003. Raf-1 and Bcl-2 induce distinct dan commn pathway that contribute to cancer drug resistance. Clinical Cancer Research, 9:1161-1170.

DeFillippis, R.A., Goodwin, E.C., Wu, L., DiMaio, D. 2003. Endogenous human papillomavirus E6 and E7 proteins differentially regulate proliferation, senescence, and apoptosis in HeLa cervical carcinoma cells. J Virol, 77(2):1551-1563.

Goldie, S.J., Kuhn, L., Denny, L. 2005. Policy Analysis of Cervical Cancer Screening Strategies in Low Resource Seetings: Clinical Benefits and Cost Effectiveness, 285: 3107-115.

Goodwi, E.C., and DiMaio, D. 2000. Repression of human papillomavirus oncogenes in HeLa cervical carcinoma cells causes the orderly reactivation of dormant tumor suppressor pathways. Biochem,97(23):125-136.

Hwang, J., Shim, J., Pyun, Y. 2000. Antibacterial activity of xanthorrhizol from curcuma xanthorrhiza against oral pathogens. Fitoterapia, 71: 321-323.

Jayaprakasha,G.K., Rao, L.J., Sakariah, K.K. 2006. Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food chem, 98: 720-724.

Li, Y., Gao, J., Zhong, Z., Hoi, P., Lee, S.M., Wang, Y. 2013. Bisdemethoxycurcumin suppresses MCF-7 cells proliferation by inducing ROS accumulation and modulating senescence-related pathways. Pharm Reports,65:700-709.

Lim, G.P., Chu, T., Yang, F., Beech, W., Frautschy, S.A., Cole, G.M. 2001. The curry spice curcumin reduces oxidative damage and amyloid pathology in an alzheimer transgenic mouse. J. Neurosci, 21:8370–7.

Lin, Y.G., Kunnumakkara, A.B., Nair, A., Merritt, W.M. Han, L.Y,. Pena, G.N.A., Kamat, A.A., Spannuth, W.A., Gershenson, D.M., Lutgendorf, S.K., Aggarwal, B.B., Sood, A.K. 2007. Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-ĸB pathway. Clin Cancer Res, 13(11):3423-3430.

Matsuda, H., Tewtrakul, S., Morikawa, T., Nakamura, A. 2004. Anti-allergic principles from thai zedoary: structural requirements of curcuminoids extracts for inhibition of degranulation and effect on the release of TNF-a and IL-4 in RBL-2H3 cells. Bioorg. Medicinal Chem, 12:5891-5898.

Mishra, P. 2009. Isolation, spectroscopic characterization and molecular modeling studies of mixture of curcuma longa, ginger and seeds of fenugreek. IJPR, 1(1):79-95.

Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J.Immunol.Methods, 65: 55-63.

Nakano, T., Ohno, T.,Ishikawa, H., Suzuki, Y., and Takashi, T. 2010. Current advancement in radiation therapy for utarine cervical cancer. Journal Radial Res, 51(1): 1-8.

Pang, X., Cui, F., Tian, J., Chen, J., Zhou, J., Zhou, W. 2009. Preparation and Characterization of Magnetic Solid Lipid Nanoparticles Loaded with Ibuprofen. Asian Journal of Pharmaceutical Science, 4:32–37.

Piantino, C.B., Salvadori, F.A., Ayres, P.P., Kato, R.B., Srougi, V., Leite, K.R., Srougi M. 2009. An Evaluation of the Anti-neoplastic Activity of Kurkumin in Prostate Cancer Cell Lines. International Braz J Urol, 3(35): 354-361.

Ramachandran, C., Fonseca, H.B., Jhabvala, P., Escalon, E.A., and Melnick, S.J. 2002. Curcumin inhibits telomerase activity through human telomerase reverse transcritpase in MCF-7 breast cancer cell line. Cancer Lett, 184: 1-6.

Rasjidi, I. 2009. Epidemiologi Kanker Serviks. Indonesian Journal of Cancer, 3(3) :103-108.

Sari, K. 2012. Aktivitas antioksidan, antiproliferasi sel kanker serta karakterisasi kimia fraksi aktif kayu teras surian (Toona sinensis) dan suren (T. sureni) [Disertasi]. Bogor: Institut Pertanian Bogor.

Sreekanth, C., Bava, S., Sreekumar, E., Anto, R. 2011. Molecular evidences for the chemosensitizing efficacy of liposomal curcumin in paclitaxel chemotherapy in mouse models of cervical cancer. Oncogene, 30(28): 3139-3152.

Syahputra,G. 2014. Simulasi docking senyawa kurkumin dan analognya sebagai inhibitor enzim 12-lipoksigenase [Tesis]. Bogor: Institut Pertanian Bogor.

Tsuda, A., and Peter, G. 2015. Nanoparticles in the lung environmental exposure and drug delivery. CRC Press. Amerika Serikat. E-book. https://onlybooks.org/nanoparticles-in-the-lung-environmental-exposure-and-drug-delivery-18241.

Waghmare, A.S., Grampurohit, N.D., Gadhave, M.V., Gaikwad, D.D., Jadhav, S.L. 2012. Solid lipid nanoparticle: A promising drug delivery system. IRJP, 4(3):100-107.

WHO. 2014. Comprehensive cervical cancer control: A guide to essential practice. Second edition. [Internet]. [diunduh 10 Juli 2017]. Tersedia pada http://apps.who.int/iris/bitstream/10665/144785/1/9789241548953_eng.pdf.




DOI: https://doi.org/10.52447/inspj.v2i1.822

Refbacks

  • There are currently no refbacks.


Copyright@ Pusat Penelitian Fakultas Farmasi

Universitas 17 Agustus 1945 Jakarta

Online ISSN : 2502-8421

 

Pengunjung